
OntoSoft: Capturing Scientific Software Metadata
Yolanda Gil and Varun Ratnakar

Information Sciences Institute
University of Southern California

4676 Admiralty Way
Marina del Rey CA, 90292
gil@isi.edu, varunr@isi.edu

Daniel Garijo
Ontology Engineering Group
Dpto. Inteligencia Artificial,

Facultad de Informática
Universidad Politécnica de Madrid

dgarijo@fi.upm.es

ABSTRACT
This paper presents OntoSoft, an ontology to describe
metadata for scientific software. The ontology is designed
considering how scientists would approach the reuse and
sharing of software. This includes supporting a scientist to:
1) identify software, 2) understand and assess software, 3)
execute software, 4) get support for the software, 5) do
research with the software, and 6) update the software. The
ontology is available in OWL and contains more than fifty
terms. We are using OntoSoft to structure a software
registry for geosciences, and to develop user interfaces to
capture its metadata.

Author Keywords
Ontologies, software reuse, knowledge capture.

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces - Interaction styles.

INTRODUCTION
Scientific software captures important knowledge and
should be shared and reused. Although there are many
popular code repositories used by scientists there is still a
significant amount of software that is never shared. The
reasons for not sharing scientific software include the desire
to not expose less-than-ideal code, lack of incentives and
credit for software, and interest in software
commercialization among others [Howison and Herbsleb
2011]. While the loss of “dark data” in science is well
recognized [Heidorn 2008], there is an analogous problem
in the pervasive loss of “dark software”.

Our interest is in supporting software sharing across the
geosciences. With the exception of big model packages
typically shared in modeling frameworks, geosciences
software is rarely shared. In addition, it is scattered in
different sites and not easy to find or reuse. Our goal is to
improve software sharing by developing a software registry
framework that includes metadata useful for discovery and

reuse among scientists who are not software developers.

This paper introduces the OntoSoft software registry and its
ontology for describing scientific software metadata. The
ontology contains basic metadata properties to describe
how to identify software, understand what it does and its
utility for research, execute it, get support if questions arise,
do research with it, and contribute to its development.
These are all topics of interest to scientists, and the
ontology revolves around those categories as a way to
frame the requests for metadata in a practical light to
incentivize scientists to provide it.

RELATED WORK
The Core Software Ontology (CSO) and the Core Ontology
of Software Components (COSC) and [Oberle et al 2006]
extend the DOLCE ontology [Gangemi et al 2002] to
describe software components and web services. These
ontologies were designed to describe large software
systems, so their requirements include the accessibility of
the software components, middleware services, execution
failures, and composition of software. CSO formalizes
concepts related to software and data, and includes both
software components and services. COSC extends CSO to
define software components further, and includes notions
such as interaction protocols and taxonomies. However,
they focus on complex software systems, rather than in end
users who are scientists and need to define software in
terms of its reuse by other scientists.

Software repositories (e.g., GitHub, CRAN) are used
widely by scientists. Although they allow users to describe
their software, they do not use an ontology or model that
can be exploited to support reuse.

REQUIREMENTS AND DESIGN OF ONTOSOFT
There are a few important requirements that we took into
account in the design of OntoSoft.

First, the design of OntoSoft is centered on a broad range of
users of a software registry for science. Although many
scientists have sophisticated software development skills,
the vast majority of scientists that should be able to share
and reuse software do not. We considered it very important
to design OntoSoft to be accessible to them.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

K-CAP 2015, October 07-10, 2015, Palisades, NY, USA
© 2015 ACM. ISBN 978-1-4503-3849-3/15/10$15.00
DOI: http://dx.doi.org/10.1145/2815833.2816955

Proceedings of the Eighth ACM International Conference on Knowledge Capture, Palisades, NY, 2015.

Second, OntoSoft is intended for describing software
written by scientists themselves. Although scientists use a
wide range of software infrastructure to do their work, we
do not intend for OntoSoft to be used to describe such
infrastructure.

Third, the metadata captured by OntoSoft is focused on
software sharing and reuse rather than software installation.
The execution requirements for software can be quite
complex and are often provided in detailed documentation.
OntoSoft allows the specification of rather simple runtime
requirements that scientists with limited software skills
would want to specify about their software.

Fourth, scientists are never excited to provide metadata ⎯
not for datasets and not for software. We have created
automatic extraction tools that get as much information as
possible from existing software repositories. For example,
if a user provides a pointer to GitHub, the system will
extract license, implementation language, and other
information automatically. In addition, an ontology that
requires formal descriptions of every item might not have
much uptake with end users. Therefore, OntoSoft provides
high-level structure, but allows users to provide textual
descriptions for most fields. We plan to develop automatic
text extraction tools that can help users by structuring
further the textual information that they provide. We
envision a more formal ontology could be developed in the

future, once the community is used to describing software
and is more poised for adoption of a more formal ontology.

OVERVIEW OF ONTOSOFT
The metadata captured by OntoSoft falls into six major
categories based on information that a scientist would seek
about the software: 1) identify software, 2) understand and
assess software, 3) execute software, 4) get support for the
software, 5) do research with the software, and 6) update
the software. The rationale for this organization is to allow
the users who contribute software to understand why the
metadata is requested, and to allow the users that are
looking to reuse the software where to find metadata that is
relevant to them.

Figure 1 shows a snapshot of the user interface that we
developed with an earlier version of OntoSoft. It contrasts
different metadata properties for several hydrological
models.

The OntoSoft ontology and its documentation are available
online1. It is implemented in OWL.

Figure 2 shows an overview of the major metadata
properties to describe software in OntoSoft. We show in
bold the major categories and subcategories of the
properties. For each metadata property, we show its name

1 http://www.ontosoft.org/

PIHM PIHMgis DrEICH TauDEM WBMsed S
O nto$

o%$

Figure 1. A screenshot of the OntoSoft software registry, where users can compare similar software using the metadata
properties of the OntoSoft ontology. The OntoSoft registry currently hosts more than 600 entries.

followed in parentheses by its range (i.e., the values that it
can take) indicating with a plus sign when it can take more
than one value. The remainder of this section gives an
overview of the classes and properties of the OntoSoft
ontology along the six major categories above. We note that
many properties do not have structured values, instead their
values are descriptions (in text). We believe that this will
significantly reduce the burden placed on users to describe
their software, as mentioned above.

Identifying Software

This category captures metadata that allows a user to
identify a software entry. This can be, for example through
the name of the software mentioned by a colleague, or
through an identifier found in a paper.

These metadata properties include the name and a short
description. The short description of the software provides
important keywords to support search.

Another important property is a unique identifier. The
unique identifier could be a DOI, a permanent URL, or a
URI. Some software may have a unique identifier provided
by a software repository (such as the identifiers provided by
ASCL). For these reasons, the property takes a text value.

Understanding and Assessing Software

The metadata in this category allows users to understand
what the software does, and to assess its utility for research.

Several metadata properties have to do with relating the
software to knowledge about the domain. One way to find
out details about what the software does in the context of
science is to look up the web site for the software or for a
related project, which is often associated with a software
product. Other properties provide domain-specific
descriptions of the software, including uses and
assumptions, use limitations, and similar software that may
be widely known in a community.

Another set of metadata properties have to do with trusting
the software. One aspect of this is finding out who its
creator and contributors were, as well as who published the
software in the registry. This could be a person, a project, or
an institution, so the value of these properties is an agent.
Scientists have a name that carries a certain reputation, so
the names would allow a user to check on the specific
expertise of creators, contributors, and publishers. Another
property allows users to specify the funding sources for the
software. We also ask for reassurances on the commitment
of support of the software, which could be whether it has a
development community, whether the creator has been
supporting it for several years, etc.

Another aspect of trust is understanding who is using the
software and how they would rate it. The metadata
properties to capture this include adopters (which again can
be people, projects, entities), use statistics (extracted from
the registry itself or cumulative download statistics that
could be automatically extracted from the repository where

Understand)
!!Relate)–)domain)knowledge)

!has!domain!keywords!(desc)!
!has!uses!and!assump4ons!(desc)!
!has!use!limita4ons!(desc)!
!similar!so7ware!(desc)!

!

!!Trust)–)quality)and)ra7ngs)
!has!creator!(agent+)!
!has!publisher!(agent+)!
!has!major!contributor!(agent+)!
!commitment!of!support!(desc)!
!has!adopters!(en4ty+)!
!has!use!informa4on!(desc)!
!has!use!sta4s4cs!(desc)!
!used!in!publica4on!(cita4on+)!
!has!benchmark!informa4on!(desc)!
!has!salient!quali4es!(desc)!
!has!funding!sources!(desc)!
!has!ra4ng!(ra4ng+)!

Execute)
!!Access)–)download)

!has!code!loca4on!(loca4on)!
!has!executable!loca4on!(loca4on)!
!has!license!(license+)!

!

!!Install)–)execu7on)requirements)
!has!documenta4on!(loca4on)!
!has!installa4on!instruc4ons!(desc)!
!has!implementa4on!language!(language+)!
!has!dependency!(so7ware!version)!
!requires!average!memory!(measurement)!
!supports!opera4ng!system!(os)!
!has!average!run!4me!(desc)!
!has!other!implementa4on!details!(desc)!

!

))Run)–)tes7ng)execu7on)
!has!test!data!(desc)!
!has!test!instruc4ons!(desc)!

!
Do)Research)
!!Experiment)–)run)with)other)data)

!has!input!(i@o)!
!has!input!parameter!(i@o)!
!has!output!(i@o)!
!has!relevant!data!sources!(desc)!

!

!!Compose)–)run)with)other)soAware)
!has!interoperable!so7ware!(desc+)!
!has!composi4on!descrip4on!(composi4on)!

!

!!Cite)–)scien7fic)publica7ons)
!has!preferred!cita4on!(cita4on+)!

Update)
!
)

Track)–)evolu7on)
!has!so7ware!version!(version)!
!has!version!release!date!(date)!
!supersedes!(version)!
!superseded!by!(version)!

Contribute)–)evolu7on)
!has!ac4ve!development!(desc)!
!has!so7ware!community!(desc)!

Iden7fy)
!!Locate)–)unique)iden7fier)

!has!name!(desc)!
!has!short!descrip4on!(desc)!
!has!so7ware!category!(desc)!
!has!unique!ID!(uniqueID)!
!has!project!web!site!(loca4on+)!

Get)Support)
)

!!Discuss)–)support)and)community)
!has!email!contact!(email)!
!has!so7ware!support!(desc)!

Figure 2. High-level overview of the OntoSoft ontology.

the software resides), and the publications that use the
software.

Executing the Software

This category focuses on describing how to execute the
software. This goes beyond instructions to install and run
it, and includes how to access the software and how to run
it with test data.

Several properties address the access of the code itself.
They include license information, a location where the code
resides (a repository or a local URL), and a location where
a self-contained executable could be found. This is because
many scientists do not want to go through the trouble of
installing the original source code, and would prefer a
pointer to an executable that can be directly run.

Other properties provide execution requirements that allow
the installation of the software. These include
documentation and installation instructions, the
implementation language, the operating system, and
average memory requirements. Another important property
is the runtime dependencies, for example libraries that
should be installed where the software is run. The average
runtime is also important, and this would typically not be
just a number but an explanation of what to expect the
runtime to be depending on the size or characteristics of the
data. We include a property to specify additional
implementation details, described in free text form.

There are also properties that help a user run the software.
These include pointers to test datasets, and instructions to
check that the software runs properly and to check that the
right results are obtained for the test data.

Getting Support for the Software

This category addresses how users can get support if they
have any questions about the appropriate use of the
software, have any problems with its installation, or wish to
ask about specific cases not described in the documentation.
This includes an email address to contact and a description
of whether and how the software is supported.

Doing Research with the Software

This category includes metadata to enable scientists to do
research with the software they want to use. Note that the
metadata properties in the second category (understanding
the software) are relevant here, but we expect the user is
already aware of those since they would be considered
before wishing to install and run the software.

Some metadata properties specify the particular input and
output requirements of the software. This includes the
types and constraints on the input data and parameters, as
well as the expected outputs. Another important metadata
property points the user to data sources where other data to
run the software can be found.

Another set of properties is concerned with running the
software in combination with other software,. This does not

need to be specified as a formal workflow, it can be
provided as a textual/diagrammatic description.

A metadata property is included to specify how to cite the
software in a scientific publication.

Updating the Software

This category includes metadata to find new versions of the
software, and to point users to a community that supports
future extensions of the software. Some metadata
properties are provided to track software version and
release date, as well as properties to indicate whether there
is a newer version and whether there are older versions that
are superseded by the software. Finally, some metadata
properties allow users to find whether the software is being
actively developed, and pointers to on-line communities
(mailing lists, issue tracking sites, etc.) who collaborate to
further develop the software.

CONCLUSIONS
This paper describes the OntoSoft software registry
designed using the OntoSoft ontology for describing
metadata for scientific software. The ontology contains
basic metadata properties to describe how to identify
software, understand what it does and its utility for
research, execute it, get support if questions arise, do
research with it, and contribute to its development. A key
contribution of OntoSoft is that its design is centered on
users who are focused on doing scientific research, rather
than software developers.

ACKNOWLEDGMENTS
We gratefully acknowledge the support from the US
National Science Foundation with grant ICER-1440323.
We would like to thank other members of the OntoSoft
project, including Scott Peckham, Chris Mattmann, Erin
Robinson, and Chris Duffy. We would also like to thank the
many early adopters of OntoSoft, in particular Cedric
David, Leslie Hsu, Anna Kelbert, and Sandra Villamizar.

REFERENCES
[1] Howison, J. and Herbsleb, J. D. “Scientific software

production: incentives and collaboration.” Proceedings of
the ACM Conference on Computer-Supported
Collaborative Work (CSCW) , 2011.

[2] B. P. Heidorn. “Shedding Light on the Dark Data in the
Long Tail of Science.” Library Trends, 57(2), 2008.

 [3] Oberle D., Lamparter S., Grimm S., Vrandecic D.,
Staab S., Gangemi A. “Towards Ontologies for
Formalizing Modularization and Communication in
Large Software Systems.” Journal of Applied Ontology,
Vol. 1, No. 2, 2006.

[4] Gangemi, A., Guarino, N., Masolo, C., Oltramari, A.,
Schneider, L. “Sweetening Ontologies with DOLCE.”
Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management
(EKAW), Siguenza, Spain, 2002.

